- Prepare the data
- Basic stripcharts
- Add summary statistics on a stripchart
- Add mean and median points
- Stripchart with box blot and violin plot
- Add mean and standard deviation
- Change point shapes by groups
- Change stripchart colors by groups
- Change the legend position
- Change the order of items in the legend
- Stripchart with multiple groups
- Customized stripcharts
- Infos
This R tutorial describes how to create a stripchart using R software and ggplot2 package. Stripcharts are also known as one dimensional scatter plots. These plots are suitable compared to box plots when sample sizes are small.
The function geom_jitter() is used.
ToothGrowth data sets are used :
# Convert the variable dose from a numeric to a factor variableToothGrowth$dose <- as.factor(ToothGrowth$dose)head(ToothGrowth)
## len supp dose## 1 4.2 VC 0.5## 2 11.5 VC 0.5## 3 7.3 VC 0.5## 4 5.8 VC 0.5## 5 6.4 VC 0.5## 6 10.0 VC 0.5
Make sure that the variable dose is converted as a factor variable using the above R script.
library(ggplot2)# Basic stripchartggplot(ToothGrowth, aes(x=dose, y=len)) + geom_jitter()# Change the position# 0.2 : degree of jitter in x directionp<-ggplot(ToothGrowth, aes(x=dose, y=len)) + geom_jitter(position=position_jitter(0.2))p# Rotate the stripchartp + coord_flip()
Choose which items to display :
p + scale_x_discrete(limits=c("0.5", "2"))
Change point shapes and size :
# Change point sizeggplot(ToothGrowth, aes(x=dose, y=len)) + geom_jitter(position=position_jitter(0.2), cex=1.2)# Change shapeggplot(ToothGrowth, aes(x=dose, y=len)) + geom_jitter(position=position_jitter(0.2), shape=17)
Read more on point shapes : ggplot2 point shapes
The function stat_summary() can be used to add mean/median points and more to a stripchart.
Add mean and median points
# stripchart with mean pointsp + stat_summary(fun.y=mean, geom="point", shape=18, size=3, color="red")# stripchart with median pointsp + stat_summary(fun.y=median, geom="point", shape=18, size=3, color="red")
Stripchart with box blot and violin plot
# Add basic box plotggplot(ToothGrowth, aes(x=dose, y=len)) + geom_boxplot()+ geom_jitter(position=position_jitter(0.2))# Add notched box plotggplot(ToothGrowth, aes(x=dose, y=len)) + geom_boxplot(notch = TRUE)+ geom_jitter(position=position_jitter(0.2))# Add violin plotggplot(ToothGrowth, aes(x=dose, y=len)) + geom_violin(trim = FALSE)+ geom_jitter(position=position_jitter(0.2))
Read more on box plot : ggplot2 box plot
Read more on violin plot : ggplot2 violin plot
Add mean and standard deviation
The function mean_sdl is used. mean_sdl computes the mean plus or minus a constant times the standard deviation.
In the R code below, the constant is specified using the argument mult (mult = 1). By default mult = 2.
The mean +/- SD can be added as a crossbar or a pointrange :
p <- ggplot(ToothGrowth, aes(x=dose, y=len)) + geom_jitter(position=position_jitter(0.2))p + stat_summary(fun.data="mean_sdl", mult=1, geom="crossbar", width=0.5)p + stat_summary(fun.data=mean_sdl, mult=1, geom="pointrange", color="red")
Note that, you can also define a custom function to produce summary statistics as follow
# Function to produce summary statistics (mean and +/- sd)data_summary <- function(x) { m <- mean(x) ymin <- m-sd(x) ymax <- m+sd(x) return(c(y=m,ymin=ymin,ymax=ymax))}
Use a custom summary function :
p + stat_summary(fun.data=data_summary, color="blue")
In the R code below, point shapes are controlled automatically by the variable dose.
You can also set point shapes manually using the function scale_shape_manual()
# Change point shapes by groupsp<-ggplot(ToothGrowth, aes(x=dose, y=len, shape=dose)) + geom_jitter(position=position_jitter(0.2))p# Change point shapes manuallyp + scale_shape_manual(values=c(1,17,19))
Read more on point shapes : ggplot2 point shapes
In the R code below, point colors of the stripchart are automatically controlled by the levels of dose :
# Use single colorggplot(ToothGrowth, aes(x=dose, y=len)) + geom_jitter(position=position_jitter(0.2), color="red")# Change stripchart colors by groupsp<-ggplot(ToothGrowth, aes(x=dose, y=len, color=dose)) + geom_jitter(position=position_jitter(0.2))p
It is also possible to change manually stripchart colors using the functions :
- scale_color_manual() : to use custom colors
- scale_color_brewer() : to use color palettes from RColorBrewer package
- scale_color_grey() : to use grey color palettes
# Use custom color palettesp+scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9"))# Use brewer color palettesp+scale_color_brewer(palette="Dark2")# Use grey scalep + scale_color_grey() + theme_classic()
Read more on ggplot2 colors here : ggplot2 colors
p + theme(legend.position="top")p + theme(legend.position="bottom")p + theme(legend.position="none")# Remove legend
The allowed values for the arguments legend.position are : “left”,“top”, “right”, “bottom”.
Read more on ggplot legends : ggplot2 legend
The function scale_x_discrete can be used to change the order of items to “2”, “0.5”, “1” :
p + scale_x_discrete(limits=c("2", "0.5", "1"))
# Change stripchart colors by groupsggplot(ToothGrowth, aes(x=dose, y=len, color=supp)) + geom_jitter(position=position_jitter(0.2))# Change the position : interval between stripchart of the same groupp<-ggplot(ToothGrowth, aes(x=dose, y=len, color=supp, shape=supp)) + geom_jitter(position=position_dodge(0.8))p
Change stripchart colors and add box plots :
# Change colorsp+scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9"))# Add box plotsggplot(ToothGrowth, aes(x=dose, y=len, color=supp)) + geom_boxplot(color="black")+ geom_jitter(position=position_jitter(0.2))# Change the positionggplot(ToothGrowth, aes(x=dose, y=len, color=supp)) + geom_boxplot(position=position_dodge(0.8))+ geom_jitter(position=position_dodge(0.8))
# Basic stripchartggplot(ToothGrowth, aes(x=dose, y=len)) + geom_boxplot()+ geom_jitter(position=position_jitter(0.2))+ labs(title="Plot of length by dose",x="Dose (mg)", y = "Length")+ theme_classic()# Change color/shape by groupsp <- ggplot(ToothGrowth, aes(x=dose, y=len, color=dose, shape=dose)) + geom_jitter(position=position_jitter(0.2))+ labs(title="Plot of length by dose",x="Dose (mg)", y = "Length")p + theme_classic()
Change colors manually :
# Continuous colorsp + scale_color_brewer(palette="Blues") + theme_classic()# Discrete colorsp + scale_color_brewer(palette="Dark2") + theme_minimal()# Gradient colorsp + scale_color_brewer(palette="RdBu")
Read more on ggplot2 colors here : ggplot2 colors
This analysis has been performed using R software (ver. 3.1.2) and ggplot2 (ver. 1.0.0)